Computational and applied mechanics: finite element methods; variational approaches for classical and quantum mechanics; mutliphysics continuum dynamics; piezo- and flexo-electrics; micro mechanics; and size-dependent continuum theories
Darrall, B.T., “Convolved energy variational principle in heat diffusion”, Int. J. Heat Mass Transf, 175, 121315 (2021).
Pedgaonkar, A., Darrall, B.T., Dargush, G.F., “Mixed displacement and couple stress finite element method for anisotropic centrosymmetric materials”, Eur. J. Mech. A-Solids, 85, 104074 (2021).
Darrall, B.T., Dargush, G.F. “Variational principle and time-space finite element method for dynamic thermoelasticity based on mixed convolved action”, Eur. J. Mech. A-Solids, 71, 351-364, (2018).
Darrall, B.T. “Variational principles and time-space finite element methods based on mixed convolved action for heat diffusion, dynamic thermoelasticity, poroelasticity, and time-dependent quantum mechanics”, PhD Dissertation, University at Buffalo, The State University of New York (2016).
Darrall, B.T., Dargush, G.F. “Mixed convolved action variational methods for poroelasticity”, ASME J. App. Mech, 83, 091011 (2016).
Dargush, G.F., Darrall, B.T., Kim, J., Apostolakis, G. “Mixed convolved action principles in linear continuum dynamics”, Acta Mech., 226, 4111-4137 (2015).
Darrall, B.T., Hadjesfandiari, A.R., Dargush, G.F. “Size-dependent piezoelectricity: A 2D finite element formulation for electric field-mean curvature coupling in dielectrics”, Eur. J. Mech. A-Solids, 49, 308-320 (2015).