Johannes Hachmann, PhD

Curriculum Vitae

University at Buffalo, The State University of New York Department of Chemical and Biological Engineering NYS Center of Excellence in Materials Informatics 612 Furnas Hall Buffalo, NY 14260 Office: +1-716-645-1524 Cell: +1-607-339-9346 hachmann@buffalo.edu www.cbe.buffalo.edu/hachmann http://hachmannlab.cbe.buffalo.edu

PROFESSIONAL BACKGROUND since 2014 • Assistant Professor, Department of Chemical and Biological Engineering (CBE) Faculty Member, New York State Center of Excellence in Materials Informatics (CMI) since 2014 Core Faculty Member, Computational and Data-Enabled Science and Engineering Program (CDSE) since 2014 Faculty Member, Institute for Research and Education in eNergy, Environment, and Water (RENEW) since 2015 University at Buffalo, The State University of New York (Buffalo, NY) Research Associate 2012 - 20142009 - 2012 Postdoctoral Research Fellow Harvard University (Cambridge, MA), Department of Chemistry and Chemical Biology Advisor: Prof. Alán Aspuru-Guzik • Graduate Research and Teaching Assistant 2004 - 2009Cornell University (Ithaca, NY), Department of Chemistry and Chemical Biology Advisor: Prof. Garnet K.-L. Chan 2003 - 2004 Undergraduate Research Assistant University of Cambridge (UK), Department of Chemistry Advisor: Prof. Nicholas C. Handy[†] **EDUCATION** 2010 • PhD, Theoretical Chemistry Ab Initio Density Matrix Renormalization Group Methodology and Computational Transition Metal Chemistry 2007 • MSc, Theoretical Chemistry Development of Density Matrix Renormalization Group Methodology in Electronic Structure Theory 2004 - 2009Cornell University, Department of Chemistry and Chemical Biology Advisor: Prof. Garnet K.-L. Chan 2004 • DiplChem, Theoretical Chemistry Nodal Hypersurfaces and Sign Domains in Many-Electron Wavefunctions • Predipl, Chemistry 2001 University of Jena (Germany), School of Chemistry and Earth Sciences 1999 - 2004University of Cambridge (UK), Department of Chemistry 2003 - 2004 Advisors: PD Dr. Hans-Gerhardt Fritsche, Prof. Nicholas C. Handy[†] **AWARDS & HONORS** 2018 Gold Coin of the Buffalo Blue Sky Initiative

 2018 UB AIChE Professor of the Year Award 	2018
 UB President Emeritus and Mrs. Meyerson Award for Distinguished 	2018
Undergraduate Teaching and Mentoring	
NSF CAREER Award	2018
 2017 UB SEAS Early Career Teacher of the Year Award 	2017

AWARDS & HONORS (CONTINUED)

AWARDS & HUNURS (CONTINUED)	
 Finalist of the Emerging Technologies in Computational Chemistry Competition of the 	2016
ACS Division of Computers in Chemistry	
 Runner-Up Professor of the Year of the AIChE Buffalo Student Chapter 	2016
 Computerworld Data+ Award (with the Clean Energy Project team) 	2013
 RSC Scholarship Award for Scientific Excellence of the ACS Division of Chemical Information 	2013
 ACS Division of Physical Chemistry Postdoctoral Research Award 	2013
IBM-Löwdin Award	2013
 International Congress of Quantum Chemistry Outstanding Poster Award 	2012
 Finalist of the CycleCloud BigScience Challenge with Honorable Mention 	2011
 CSC Best Poster Presentation Award of the Physical, Theoretical and Computational Division 	2009
 APS Graduate Student Travel Award of the Division of Chemical Physics 	2008
IBM-Zerner Fellowship Award	2008
 Strongly Correlated Electron Systems Young Investigator Award 	2007
 CCG Excellence Award of the ACS Division for Computers in Chemistry 	2006
 Kekulé Fellowship of the Fund of the German Chemical Industry 	2005 – 2007
Diploma with Distinction	2004
 Study-Abroad-Scholarship of the German National Academic Foundation 	2003 – 2004
 Scholarship of the German National Academic Foundation 	2000 – 2004
GRANTS & FUNDING (AS LEAD-PI)	
 NYS Center of Excellence in Materials Informatics, Collaboration Funding, \$44k: 	2018 – 2019
Advancing the Software Foundations that Enable Materials Informatics (CMI-1148092)	
 NSF IIS Big Data Spokes Program (with G. Hutchison, M. Hanwell), \$700k: 	2018 – 2021
Spokes: MEDIUM: NORTHEAST: Advancing a Data-Driven Discovery and Rational Design	
Paradigm in Chemistry (IIS-1761990)	
 NSF CISE OAC Early Career Development Program, \$562k: 	2018 – 2023
CAREER: Building an Advanced Cyberinfrastructure for the Data-Driven Design of Chemical	
Systems and the Exploration of Chemical Space (OAC-1751161)	
 Toyota Central Research and Development Lab, \$30k: 	2018
Generating Electronic Structure Descriptors for Solubility Predictions	
 NYS Center of Excellence in Materials Informatics, Collaboration Funding, \$25k: 	2017 – 2018
Joining Forces to Develop the Tools and Techniques for Materials Informatics 2.0	
(CMI-1140384)	
 NSF CHE Special Projects Program (with T. Windus, J. McLean), \$79k: 	2017 – 2019
CHE Workshop: Framing the Role of Big Data and Modern Data Science in Chemistry	
(CHE-1733626)	2015
 NYS Center of Excellence in Materials Informatics, Seed Funding, \$17k: UB Solar Fuel Project (CMI-1114099) 	2015
 UUP Individual Development Award, \$1k 	2014, 2015
 UB Undergraduate STEM Mentoring and Program Development Award, \$2k 	2014
 CSA Trust Jacques-Émile Dubois Grant (Chemical Structure Association), \$3k 	2013
 Grant of the President's January Innovation Fund for Faculty 	2012
 GAIN Travel Grant (German Academic International Network) 	2009, 2012
ACS Cornell Section Graduate Student Conference Grant	2007
 Cornell Graduate Student Conference Grant, \$2k 	2006, 2007, 2009
Total: \$1.465M	
GRANTS & ELINDING (AS CO. DI. SP. PERSONNEL)	
GRANTS & FUNDING (AS CO-PI, SR PERSONNEL)	2010 2020
• NSF MolSSI Phase-II Software Fellowship (with M. Haghighatlari), \$64k:	2019 – 2020

GRANTS & FUNDING (AS CO-PI, SR PERSONNEL – CONTINUED)

Continued	
 DOE Small Business Innovation Research Program (with Kitware; M. Hanwell, B. de Jong), \$1M: Open Interactive Data Analytics Platform for Chemical-Physics Simulations and Experiments (DE-SC0017193) 	2018 – 2020
 NSF MolSSI Phase-I Software Fellowship (with M. Haghighatlari), \$21k: 	2018
MolSSI Graduate Student Fellowship: ChemML, A Machine Learning and Informatics Program	
Suite for the Chemical and Materials Sciences (ACI-1547580-479590)	
 NSF Major Research Instrumentation Program (with T. Furlani, et al.), \$1M: 	2017 – 2018
MRI: Acquisition of High-Performance Computing Infrastructure to Support Computational and Data-Enabled Science and Engineering (OAC-1724891)	
 DOD ARO Small Business Innovation Research Program (with Technology Holding LLC; J. Alvaré), 	2017 – 2018
\$100k: Informatics-Driven Design of Eutectics and Nanomaterials-Based Supercapacitors	
for Enhanced Low-Temperature Performance (W15QKN-17-C-0078)	
 NSF IIS Big Data Spokes (Big Data Regional I) Program (with A. Patra et al.), \$100k: 	2016 – 2018
BD Spokes: Planning: NORTHEAST: Partnerships for Energy-Cycle Innovation through Big Data (IIS-1636818)	
 NYS Center of Excellence in Materials Informatics, Collaboration Funding (with C. Cheng), \$40k: 	2015 – 2016
Development of Biodegradable Polymers for Medical Applications Guided by Materials Informatics (CMI-1122381)	
 NSF CBET Energy for Sustainability Program (with G. Wu, C. Cheng), \$300k: 	2015 – 2018
UNS: 3-Dimensional Porous Nanographene for Highly Efficient Energy Storage in Li-Ion Batteries (CBET-1511528)	
Total: \$2.625M	

PUBLICATIONS

- M.A.F. Afzal, M. Haghighatlari, S. Prasad Ganesh, C. Cheng, <u>J. Hachmann</u>, Accelerated Discovery of High-Refractive-Index Polyimides via First-Principles Molecular Modeling, Virtual High-Throughput Screening, and Data Mining, J. Phys. Chem. (2019), submitted. (invited) DOI: 10.26434/chemrxiv.7670903.v1
- M. Haghighatlari, J. Hachmann, Advances of Machine Learning in Molecular Modeling and Simulation, Curr. Opin. Chem. Eng. 23 (2019), 51-57. (invited) DOI: 10.1016/j.coche.2019.02.009
- M.A.F. Afzal, <u>J. Hachmann</u>, High-Throughput Computational Studies in Catalysis and Materials Research, and Their Impact on Rational Design in Big Data Methods in Experimental Materials Discovery, S. Kalidindi, T. Lookman, Eds., World Scientific, Singapore (2019), accepted. (invited) ISBN: TBD; DOI: arXiv:1902.03721
- M.A.F. Afzal, J. Hachmann, Benchmarking DFT Approaches for the Calculation of Polarizability Inputs for Refractive Index Predictions in Organic Polymers, Phys. Chem. Chem. Phys. 21 (2019), 4452-4460.
 DOI: 10.1039/C8CP05492D
- R. Asatryan, Y. Pal, <u>J. Hachmann</u>, E. Ruckenstein, *Roaming-Like Mechanism for the Dehydration of Diol Radicals*, J. Phys. Chem. A 122 (2018), 9738-9754. DOI: 10.1021/acs.jpca.8b08690
- A.L. Ferguson, J. Hachmann, Machine Learning and Data Science in Materials Design: A Themed Collection (Editorial), Mol. Syst. Des. Eng. 3 (2018), 429-430. DOI: 10.1039/C8ME90007H
- J. Hachmann, T. Windus, J. McLean, V. Allwardt, A. Schrimpe-Rutledge, M.A.F. Afzal, M. Haghighatlari, Framing the Role of Big Data and Modern Data Science in Chemistry, NSF CHE Workshop Report (2018). DOI: TBD
- J. Hachmann, M.A.F. Afzal, M. Haghighatlari, Y. Pal, Building and Deploying a Cyberinfrastructure for the Data-Driven Design of Chemical Systems and the Exploration of Chemical Space, Mol. Simul. 44 (2018), 921-929. (invited) DOI: 10.1080/08927022.2018.1471692
- M.A.F. Afzal, C. Cheng, <u>J. Hachmann</u>, Combining First-Principles and Data Modeling for the Accurate Prediction of the Refractive Index of Organic Polymers, J. Chem. Phys. 148 (2018), 241712. (invited) DOI: 10.1063/1.5007873

PUBLICATIONS (CONTINUED)

 R. Asatryan, E. Ruckenstein, <u>J. Hachmann</u>, Revisiting the Polytopal Rearrangements in Penta-Coordinate d⁷-Metallocomplexes: Modified Berry Pseudorotation, Octahedral Switch, and Butterfly Isomerization, Chem. Sci. 8 (2017), 5512-5525.

DOI: 10.1039/c7sc00703e

- E.O. Pyzer-Knapp, G. Simm, T. Lutzow, K. Li, L.R. Seress, J. Hachmann, A. Aspuru-Guzik, The Harvard Organic Photovoltaic Dataset, Sci. Data 3 (2016), 160086. DOI: 10.1038/sdata.2016.86
- 12. J. Hachmann, R. Olivares-Amaya, A. Jinich, A.L. Appleton, M.A. Blood-Forsythe, L.R. Seress, C. Román-Salgado, K. Trepte, S. Atahan-Evrenk, S. Er, S. Shrestha, R. Mondal, A. Sokolov, Z. Bao, A. Aspuru-Guzik, *Lead Candidates for High-Performance Organic Photovoltaics from High-Throughput Quantum Chemistry the Harvard Clean Energy Project*, Energy Environ. Sci. 7 (2014), 698-704.
 - DOI: 10.1039/c3ee42756k
- C. Amador-Bedolla, R. Olivares-Amaya, J. Hachmann, A. Aspuru-Guzik, Organic photovoltaics, in Informatics for Materials Science and Engineering – Data-driven Discovery for Accelerated Experimentation and Application, K. Rajan, Ed., Elsevier, Amsterdam (2013), 423-442. (invited) ISBN: 978-0123943996
- R. Olivares-Amaya, C. Amador-Bedolla, J. Hachmann, S. Atahan-Evrenk, R.S. Sánchez-Carrera, L. Vogt, A. Aspuru-Guzik, Accelerated Computational Discovery of High-Performance Materials for Organic Photovoltaics by Means of Cheminformatics, Energy Environ. Sci. 4 (2011), 4849-4861. DOI: 10.1039/c1ee02056k
- J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R.S. Sánchez-Carrera, A. Gold-Parker, L. Vogt, A.M. Brockway, A. Aspuru-Guzik, *The Harvard Clean Energy Project: Large-Scale Computational Screening and Design* of Organic Photovoltaics on the World Community Grid, J. Phys. Chem. Lett. 2 (2011), 2241-2251. (invited) DOI: 10.1021/jz200866s
- J. Hachmann, B.A. Frazier, P.T. Wolczanski, G.K.-L. Chan, A Theoretical Study of the 3d-M(smif)₂ Complexes: Structure, Magnetism, and Oxidation States, ChemPhysChem 12 (2011), 3236-3244.
 DOI: 10.1002/cphc.201100286
- J.J. Dorando, J. Hachmann, G.K.-L. Chan, Analytic Response Theory for the Density Matrix Renormalization Group, J. Chem. Phys. 130 (2009), 184111. DOI: 10.1063/1.3121422
- D. Ghosh, J. Hachmann, T. Yanai, G.K.-L. Chan, Orbital Optimization in the Density Matrix Renormalization Group, with Application to Polyenes and β-Carotene, J. Chem. Phys. 128 (2008), 144117. DOI: 10.1063/1.2883976
- G.K.-L. Chan, J.J. Dorando, D. Ghosh, J. Hachmann, E. Neuscamman, H. Wang, T. Yanai, An Introduction to the Density Matrix Renormalization Group Ansatz in Quantum Chemistry, Prog. Theor. Chem. Phys. 18 (2008), 49-65. DOI: 10.1007/978-1-4020-8707-3_4
- J. Hachmann, J.J. Dorando, M. Avilés, G.K.-L. Chan, *The Radical Character of the Acenes: A Density Matrix Renormalization Group Study*, J. Chem. Phys. 127 (2007), 134309. DOI: 10.1063/1.2768362
- J.J. Dorando, J. Hachmann, G.K.-L. Chan, *Targeted Excited State Algorithms*, J. Chem. Phys. 127 (2007), 084109. DOI: 10.1063/1.2768360
- J. Hachmann, W. Cardoen, G.K.-L. Chan, Multireference Correlation in Long Molecules with the Quadratic Scaling Density Matrix Renormalization Group, J. Chem. Phys. 125 (2006), 144101. DOI: 10.1063/1.2345196
- J. Hachmann, P.T.A. Galek, T. Yanai, G.K.-L. Chan, N.C. Handy, *The Nodes of Hartree-Fock Wavefunctions and their* Orbitals, Chem. Phys. Lett. 392 (2004), 55-61. DOI: 10.1016/j.cplett.2004.04.070

Summary: 1510+ citations; h-index: 12; i10-index: 13

PUBLICATIONS IN PREPARATION

• M.A.F. Afzal, A. Sonpal, M. Haghighatlari, A.J. Schultz, <u>J. Hachmann</u>*, A Deep Neural Network Model for Packing Density Predictions and its Application in the Study of 1.5 Million Organic Molecules, to be submitted to Chem. Mater. (published as part of the PhD thesis of M.A.F. Afzal).

PUBLICATIONS IN PREPARATION (CONTINUED)

- M. Haghighatlari, <u>J. Hachmann</u>, Redesigning Machine Learning Training Sets Based on Chemical Intuition: The Path Towards Robust and Generalized Structure-Property Relationships, to be submitted to Mol. Syst. Des. Eng. (invited)
- M. Haghighatlari, J. Hachmann, Trend-Based Feature Selection in Molecular Descriptor Space, to be submitted to Mater. Discovery. (invited)
- M. Haghighatlari, <u>J. Hachmann</u>, ChemML A Machine Learning and Informatics Program Suite for the Analysis, Mining, and Modeling of Chemical and Materials Data, to be submitted to Wiley Interdiscip. Rev.: Comput. Mol. Sci.
- G. Vishwakarma, M. Haghighatlari, <u>J. Hachmann</u>, *Hyperparameter Optimization for Machine Learning in Chemistry via a Genetic Algorithm*, to be submitted to J. Chem. Theory Comput. (published as part of the MSc thesis of G. Vishwakarma).
- Y. Tian, M. Haghighatlari, <u>J. Hachmann</u>, Inheritance of Molecular Orbital Energies from Monomer Building Blocks to Larger Copolymers and Implications for the Rational Design of Organic Semiconductors, to be submitted to Mater. Discovery (published as part of the MSc thesis of Y. Tian).
- B.A. Moore, C.-Y. Shih, M. Haghighatlari, <u>J. Hachmann</u>, Systematic Trends in Results from Different DFT Model Chemistries I: Efficient Projection Schemes, to be submitted to Int. J. Quantum Chem. (published as part of the MSc thesis of C.-Y. Shih).
- C.-Y. Shih, M. Haghighatlari, B.A. Moore, <u>J. Hachmann</u>, *Systematic Trends in Results from Different DFT Model Chemistries II: Structural Patterns Related to Non-Systematic Behavior*, to be submitted to Int. J. Quantum Chem. (published as part of the MSc thesis of C.-Y. Shih).
- C.-Y. Shih, M. Haghighatlari, B.A. Moore, <u>J. Hachmann</u>, Systematic Trends in Results from Different DFT Model Chemistries III: Machine Learning Models for Non-Systematic Behavior, to be submitted to Int. J. Quantum Chem. (published as part of the MSc thesis of C.-Y. Shih).
- J. Hachmann, A Graduate Student's Guide to Writing Papers, to be submitted to Int. J. Quantum Chem. (invited tutorial)
- J. Hachmann, K. Rajan, Eds., Machine Learning and Data-Driven Research in Chemistry: Concepts, Techniques, and Applications, Wiley, Chichester.

THESES

- A. Sonpal, <u>J. Hachmann</u>, Predicting Melting Points of Deep Eutectic Solvents, MSc thesis, University at Buffalo SUNY (2018).
- 8. G. Vishwakarma, <u>J. Hachmann</u>, Machine Learning Model Selection for Predicting Properties of Organic Polymers, MSc thesis, University at Buffalo SUNY (**2018**).
- 7. M.A.F. Afzal, <u>J. Hachmann</u>, From Virtual High-Throughput Screening and Machine Learning to the Discovery and Rational Design of Polymers for Optical Applications, PhD dissertation, University at Buffalo SUNY (**2018**).
- V. Kumaran Sudalayandi Rajeswari, <u>J. Hachmann</u>, First-Principles Modeling of Polymer Degradation Kinetics and Virtual High-Throughput Screening of Candidates for Biodegradable Polymers, MSc thesis, University at Buffalo – SUNY (2018).
- 5. S. Prasad Ganesh, <u>J. Hachmann</u>, How do the Geometry Differences of Isomers Affect the Polarizability of Organic *Polymers?*, BSc Honors thesis, University at Buffalo SUNY (**2017**).
- 4. Y. Tian, J. Hachmann, Inheritance of Molecular Orbital Energies from Monomer Building Blocks to Larger Copolymers in Organic Semiconductors, MSc thesis, University at Buffalo SUNY (2016).
- 3. C.-Y. Shih, <u>J. Hachmann</u>, Systematic Trends in Results from Different Density Functional Theory Models, MSc thesis, University at Buffalo SUNY (**2015**).
- 2. J. Hachmann, G.K.-L. Chan, *Ab Initio Density Matrix Renormalization Group Methodology and Computational Transition Metal Chemistry*, PhD dissertation, Cornell University (2010).
- 1. J. Hachmann, N.C. Handy, *Nodal Hypersurfaces and Sign Domains in Many-Electron Wavefunctions*, DiplChem thesis, University of Jena (2004).

INVITED TALKS

- 44. *TBD*, Foundations of Process Analytics and Machine Learning (FOPAM), Panel on Computational Materials Design, Raleigh (NC), Aug **2019**.
- 43. *Computational and Data Science Education in Chemical Engineering*, CACHE Conference on The Future of Cyber-Assisted Chemical Engineering Education, Breckenridge (Co), Jul **2019**.

INVITED TALKS (CONTINUED)

- 42. *TBD*, 10th Congress of the International Society of Theoretical Chemical Physics, Symposium on Machine Learning and Data-Driven Approaches in Chemical Physics, Tromsø (Norway), Jul **2019**.
- 41. TBD, Machine Learning in Science and Engineering, Atlanta (GA), Jun 2019.
- 40. TBD, CISE CAREER Workshop, Alexandria (VA), Apr 2019.
- 39. *How to Make Data Science Work in the Chemical and Materials Domain,* 2nd Annual Workshop on Machine Learning in Materials Science, Houston (TX), Apr **2019**.
- 38. *Machine Learning the Structure-Property Relationships that Define Chemistry*, Department Seminar, Department of Chemistry, University of Memphis, Memphis (TN), Mar **2019**.
- 37. *Machine Learning the Structure-Property Relationships that Define Chemistry*, Department Seminar, Department of Chemical Engineering, University of Rochester, Rochester (NY), Jan **2019**.
- 36. *Machine Learning for Molecular Property Predictions and Rational Design in Chemistry*, Workshop on Machine Learning in Molecular Sciences at the Graduate Center of CUNY, New York (NY), Sep **2018**.
- 35. *Revolutionizing Molecular Modeling with Machine Learning*, 256th ACS National Meeting, COMP Division Symposium on Revolutionizing Chemical Sciences with Artificial Intelligence, Boston (MA), Aug **2018**.
- 34. Advancing Molecular Property Predictions and Design with Machine Learning, Lawrence Berkeley National Laboratory, Department Seminar, Berkeley (CA), Aug **2018**.
- 33. Advancing Molecular Property Predictions and Design with Machine Learning, Machine Learning in Science and Engineering, Symposium on Predicting Molecular Properties and Molecular Design, Pittsburgh (PA), Jun **2018**.
- 32. Advancing a Data-Driven In Silico Research Paradigm in the Chemical and Materials Domain, 2018 TechConnect World Innovation Conference, Symposium on Informatics, Modeling, and Simulation, Anaheim (CA), May **2018**.
- 31. Machine Learning in Chemistry, Dean's Advisory Council Meeting, Buffalo (NY), Apr 2018.
- 30. *Machine Learning the Structure-Property Relationships that Define Chemistry,* Humboldt Kolleg on New Vistas in Molecular Thermodynamics, Berkeley (CA), Jan **2018**.
- 29. A Roadmap to Data-Driven Discovery and Rational Design in Chemical and Materials Research, Seminar for the Center for Nonlinear Studies at Los Alamos National Laboratory, Los Alamos (NM), Sep **2017**.
- 28. *How to Make Data Science Work for Chemistry?*, Chemical Sciences Roundtable of the National Academy of Sciences, Panel on Data Science in Chemistry and Chemical Engineering, Washington (DC), Jul **2017**.
- 27. *Rational Materials Design via Machine Learning*, 253rd ACS National Meeting, CINF Division Symposium on Materials Informatics and Computational Modeling, San Francisco (CA), Apr **2017**.
- 26. A Data-Driven In Silico Research Paradigm for the Rational Design of Catalyst Systems, 253rd ACS National Meeting, CATL Division Symposium on Designed Catalysis: Materials Genome Approach to Heterogeneous Processes, San Francisco (CA), Apr **2017**.
- 25. A Software Ecosystem for the Data-Driven Design of Chemical Systems and the Exploration of Chemical Space, Workshop on Synergies between Machine Learning and Physical Models, Institute for Pure and Applied Mathematics, Los Angeles (CA), Dec **2016**.
- 24. A Software Ecosystem for Data-Driven Design of Chemical Systems and the Exploration of Chemical Space, Theory and Applications of Computational Chemistry 2016, Seattle (WA), Aug **2016**.
- 23. A Software Ecosystem for Data-Driven Design of Chemical Systems and the Exploration of Chemical Space, 252nd ACS National Meeting, COMP Division Symposium on Emerging Technologies in Computational Chemistry, Philadelphia (PA), Aug **2016**.
- 22. Computational and Data-Driven Discovery of Novel High Refractive Index Polymers, 251st ACS National Meeting, PMSE Division Symposium on Computation and Cheminformatics in Polymers Research, San Diego (CA), Mar **2016**.
- 21. Panel Discussion: The Materials Genome and Materials Informatics, 251st ACS National Meeting, Symposium on Computational Material Science: Theory meets Experiment, San Diego (CA), Mar **2016**.
- 20. Data-Driven Research and a Rational Design Paradigm in the Chemical and Materials Disciplines, 251st ACS National Meeting, Symposium on Computational Material Science: Theory meets Experiment, San Diego (CA), Mar **2016**.
- 19. ChemML a Machine Learning and Informatics Toolbox for the Chemical and Materials Sciences, Pacifichem 2015, Session on Data Mining and Machine Learning Meets Experiment and First-Principles Simulation for Materials Discovery, Honolulu (HI), Dec **2015**.
- 18. *Rational Materials Design via Machine Learning*, Department Seminar, Department of Physics, University of Vermont, Burlington (VT), Oct **2015**.
- 17. Workshop on Data Mining, Machine Learning, and Materials Informatics, Foundations of Molecular Modeling and Simulation 2015 Molecular Modeling and the Materials Genome, Mt. Hood (OR), Jul **2015**.

INVITED TALKS (CONTINUED)

- 16. Computing Quantum Chemical Results without Doing Quantum Chemistry: A Machine Learning Shortcut, 47th Midwest Theoretical Chemistry Conference, Ann Arbor (MI), Jun **2015**.
- 15. *Molecular Properties from Big Data*, Workshop on Machine Learning for Many-Particle Systems, Institute for Pure and Applied Mathematics, Los Angeles (CA), Feb **2015**.
- 14. *Molecular Properties of Organic Semiconductors from Big Data*, MRS Fall Meeting, Symposium on Fundamentals of Organic Semiconductors: Synthesis, Morphology, Devices, and Theory, Boston (MA), Dec **2014**.
- 13. *Molecular Properties from Big Data*, 248th ACS National Meeting, COMP Division Symposium on Quantum Chemical Calculation of Molecular Properties: A Tribute to Professor Nicholas C. Handy, San Francisco (CA), Aug **2014**.
- 12. The Harvard Clean Energy Project a Virtual High-Throughput Search Framework for New Organic Solar Cell Materials, 248th ACS National Meeting, ENFL Division Symposium on Applications of Theoretical Chemistry for Energy and Fuel Production, San Francisco (CA), Aug **2014**.
- 11. High-Throughput Quantum Chemistry and Big Data Techniques for the Rational Design of Organic Semiconductors, Conference on Electronics Materials and Applications 2014, Symposium on Computational Design of Electronic Materials, Orlando (FL), Jan **2014**.
- 10. From High-Throughput Quantum Chemistry to the Rational Design of Organic Semiconductors a Big Data and Materials Informatics Approach, Department Seminar, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich (Switzerland), Oct **2013**.
- 9. From High-Throughput Quantum Chemistry to the Rational Design of Organic Semiconductors a Big Data and Materials Informatics Approach, CECAM Workshop on Structure-Property Relationships of Molecular Precursors to Organic Electronics, Lausanne (Switzerland), Oct **2013**.
- 8. The Harvard Clean Energy Project: High-Throughput Screening and Design of Organic Photovoltaic Materials via Automated, First-Principles Quantum Chemistry on the IBM World Community Grid, 246th ACS National Meeting, PHYS Division Symposium on Physical Chemistry of Solar Energy Conversion, Indianapolis (IN), Sep **2013**.
- 7. *High-Throughput and Big Data Techniques in Computational Materials Science*, 246th ACS National Meeting, COMP Division Symposium on Chemical Mechanisms in Advanced Materials, Indianapolis (IN), Sep **2013**.
- 6. *Rational Design of Semiconductors for Organic Photovoltaics via High-Throughput Quantum Chemistry and Materials Informatics*, Department Seminar, School of Chemistry, University of Edinburgh, Edinburgh (Scotland), May **2013**.
- 5. Rationales Design von Halbleitern für Organische Solarzellen durch High-Throughput Quantenchemie und Materialinformatik, Theoretical Chemistry Colloquium, Institute of Physical and Theoretical Chemistry, Braunschweig University of Technology, Braunschweig (Germany), May **2013**.
- 4. The Harvard Clean Energy Project: Computational High-Throughput Screening of OPV Materials on the IBM World Community Grid, Department Seminar, Department of Chemical and Biological Engineering, University at Buffalo, SUNY, Buffalo (NY), Mar **2013**.
- 3. The Harvard Clean Energy Project: An Automated, High-Throughput, First-Principles Screening of Organic Photovoltaics on the World Community Grid, Séminaire du RQMP Versant Nord, Département de physique, Université de Montréal, Montréal (Canada), Mar **2012**.
- 2. *The Clean Energy Project: Large Scale Computational Search for New Organic Photovoltaics on the World Community Grid*, Complex Interactions & Mechanisms in Organic Photovoltaics Workshop, Brisbane (Australia), Jul **2010**.
- 1. The Harvard Clean Energy Project: A Large Scale Computational Search for New Organic Photovoltaics, 3rd Puerto Rico NSF EPSCoR/RII IFN Annual Meeting, Rio Grande (PR), May **2010**.

PROFESSIONAL AFFILIATIONS

 Engineers Without Borders USA (EWB-USA) 	since 2016
American Ceramic Society (ACerS)	2014
 American Institute of Chemical Engineers (AIChE) 	since 2013
 Materials Research Society (MRS) 	since 2012
Chemical Institute of Canada (CIC)	2009
 World Association of Theoretical and Computational Chemists (WATOC) 	since 2008
Psi-k Network	since 2008
 Deutsche Physikalische Gesellschaft (DPG) (German Physical Society) 	since 2006
American Physical Society (APS)	since 2006
American Chemical Society (ACS)	since 2005
Arbeitsgemeinschaft Theoretische Chemie (AGTC) (Association of German Theoretical Chemists)	since 2001

PROFESSIONAL AFFILIATIONS (CONTINUED)

- Deutsche Bunsengesellschaft für Physikalische Chemie (DBG) (German Society for Physical Chemistry) since 2001
- Gesellschaft Deutscher Chemiker (GDCh) (Society of German Chemists)

PROFESSIONAL SERVICE

SERVICE AS EDITOR

Editorial Board Member for Scientific Reports	since 2014
• Editorial Board Member for Computational Chemistry Highlights	since 2014
• Review Editorial Board Member for Frontiers in Theoretical and Computational Chemistry	2013 – 2018
Guest Editor for Molecular Systems Desian and Engineering	2017/2018

SERVICE AS REVIEWER AND REFEREE

- Reviewer (Journals) for Accounts of Chemical Research; Advanced Energy Materials; Australian Journal of Chemistry; Chemical Reviews; Chemical Science; Chemistry of Materials; ChemPhysChem; Computational and Theoretical Chemistry; Crystals; Energy & Environmental Science; Frontiers in Theoretical and Computational Chemistry; Inorganic Chemistry; International Journal of Quantum Chemistry; Journal of Chemical Information and Modeling; The Journal of Chemical Physics; Journal of Chemical Theory and Computation; Journal of Chemometrics; Journal of Computational Electronics; Journal of Materials Chemistry A; Journal of Molecular Modeling; The Journal of Organic Chemistry; Journal of Organometallic Chemistry; The Journal of Physical Chemistry; The Journal of Physical Chemistry Letters; Journal of the Chilean Chemical Society; Macromolecules; Materials Discovery; Molecular Simulation; Nature Communications; Nature Nanotechnology; Physical Chemistry Chemical Physics; PLOS Computational Biology; Processes; Research on Chemical Intermediates; Science; SAR and QSAR in Environmental Research; Soft Matter; Synthetic Metals; Zeitschrift für Naturforschung A
- **Reviewer (Proposals)** for US National Science Foundation (NSF); US Department of Energy (DOE); American Chemical Society Petroleum Research Fund (ACS PRF); Centre Européen de Calcul Atomique et Moléculaire (CECAM); German Research Foundation (DFG); UK Engineering and Physical Sciences Research Council (EPSRC); Netherlands Organisation for Scientific Research (NWO); Research Foundation Flanders (FWO); Swiss National Science Foundation (SNSF); Swiss National Supercomputing Centre (CSCS)
- **Reviewer (Theses)** for University at Buffalo (multiple PhD, MSc in Chemical Engineering, Chemistry); Université de Montréal (PhD in Physics)
- Jury Member for the Annual UB CBE Graduate Research Symposium; Annual UB CSTEP Summer Research Poster Symposium; UB Society of Women Engineers Competition; Annual ISEP Science Summit; Annual WNY Regional Science and Engineering Fair; Midwest Theoretical Chemistry Conference; ACS National Meeting PHYS Division; ACS COMP Division Chemical Computing Group Graduate Student Competition

SERVICE AS PROFESSIONAL ADVISOR

Advisor for Mendeley	since 2014
 SERVICE AS EVENT ORGANIZER Co-Organizer/Co-Chair of the Topical Conference on Data Science for Molecules and Materials at the AIChE Annual Meeting 	2019
 Technical Review Committee Member of TechConnect World Innovation Conference & Expo Co-Organizer/Area Chair for Computational Chemistry, Biology, and Materials Science at Foundations of Process Analytics and Machine Learning (FOPAM 2019) 	2019 2019
• Co-Organizer/Co-Chair of the NSF Division of Chemistry Workshop CHE Workshop: Framing the Role of Big Data and Modern Data Science in Chemistry	2017
• Co-Organizer/Chair of the PHYS Symposium Accelerating Discovery: Citizen Science, Big Data, and Machine Learning for Physical Chemistry at the Fall ACS National Meeting	2016
 Co-Organizer/Chair of the CoMSEF/CAST/Area 1a Session Data-Driven Screening of Chemical and Materials Space at the AIChE Annual Meeting 	2016, 2018

since 2000

PROFESSIONAL SERVICE (CONTINUED)

SERVICE AS EVENT ORGANIZER since 2015 • Co-Organizer/(Co-)Chair of the CoMSEF Session Data Mining and Machine Learning in the Molecular Sciences at the AIChE Annual Meeting • Initiator/Organizer/Chair of the Annual UB Symposium on Job and Career Perspectives for Students since 2015 in the Computational Sciences since 2015 • Co-Organizer of the Annual UB CDSE Days since 2014 • Co-Organizer of the Annual UB CBE Graduate Research Symposium since 2014 Co-Organizer of the UB CBE Department Seminar Series 2010 - 2014 • Co-Organizer of the Greater Boston Area Theoretical Chemistry Lecture Series SERVICE AS COMMUNITY SOFTWARE DEVELOPER • Lead-Developer/-Scientist of the ChemLG, ChemHTPS, ChemBDDB, and ChemML software ecosystem since 2014 since 2010 • Contributing Developer for the Q-Chem program package 2009 - 2014 • Lead-Developer/-Scientist of the Harvard Clean Energy Project Database (CEPDB) SERVICE ON DEPARTMENT COMMITTEES • Member of the UB Meyerson Award Committee • Lead Faculty for Student Recruiting and Outreach of the UB CDSE Program since 2018 • Lead Faculty of the Student Recruiting and Outreach Committee of the UB CBE Department since 2017 since 2015 • Member of the Graduate Committee of the UB CBE Department; Lead Faculty for student recruiting and McNair Scholars outreach 2015 - 2017 • Member of the Curriculum Committee of the UB CDSE Graduate Program since 2015 • Member of the Faculty Advisory Committee of the UB Center for Computational Research since 2015 • Member of the IT Committee of the UB CBE Department since 2014 Member of the UB STEM Mentored Undergraduate Research Initiative (SMURI) SERVICE ON FACULTY SEARCH COMMITTEES Faculty Search Committee Member for the UB Department of Mechanical and Aerospace Engineering • Faculty Search Committee Member for the UB Department of Chemistry SERVICE AS FACULTY ADVISOR ON STUDENT INITIATIVES since 2016 Founding Faculty Advisor for the UB Student Chapter of Engineers Without Borders (EWB-UB) since 2015 • Founding Faculty Advisor for the UB Graduate Student Association Computational Science Club (CSC) SERVICE IN OUTREACH AND MENTORING • Research Mentor for the Louis Stokes Alliances for Minority Participation (LSAMP) Program 2006, 2008, • Research Mentor for the NSF Research Experiences for Undergraduates (REU) Program 2010, 2011 **TEACHING EXPERIENCE** Instructor, University at Buffalo – SUNY, Department of Chemical and Biological Engineering Computer-Aided Research in the Chemical and Materials Sciences (CE 451/551, graduate) Spring 2019 Evaluation: Course: TBD/5, Instructor: TBD/5; Enrollment: 39; Response-Rate: TBD% Transport Processes I – Fluid Mechanics (CE 317, undergraduate) Fall 2018 Evaluation: Course: 4.4/5, Instructor: 4.8/5; Enrollment: 89; Response-Rate: 91%

2019

2014

2015

2014

2017

TEACHING EXPERIENCE (CONTINUED)

 Instructor, University at Buffalo – SUNY, Department of Chemical and Biological Engineering 	
Transport Processes I – Fluid Mechanics (CE 317, undergraduate)	Fall 2016
Evaluation: Course: 4.5/5, Instructor: 4.8/5; Enrollment: 82; Response-Rate: 93%	
Special Topics: Computer-Aided Research in the Chemical Sciences (CE 400/500, graduate) Evaluation: Course: 4.3/5, Instructor: 4.5/5; Enrollment: 39; Response-Rate: 72%	Spring 2016
Transport Processes I – Fluid Mechanics (CE 317, undergraduate)	Fall 2015
Evaluation: Course: 4.4/5, Instructor: 4.5/5; Enrollment: 85; Response-Rate: 80%	
Special Topics: Computer-Aided Research in the Chemical Sciences (CE 400/500, graduate)	Spring 2015
Evaluation: Course: 4.2/5, Instructor: 4.5/5; Enrollment: 39; Response-Rate: 72%	
Transport Processes I – Fluid Mechanics (CE 317, undergraduate)	Fall 2014
Evaluation: Course: 4.5/5, Instructor: 4.6/5; Enrollment: 72; Response-Rate: 76%	
• Guest Instructor, University at Buffalo – SUNY, Department of Chemical and Biological Engineering	
Engineering Impact On Society, Dr. W.G. Wild, Jr. (EAS 202, undergraduate)	Spring 2019
Electrochemistry for Energy and Environmental Technologies, Prof. G. Wu (CE 422/522, graduate)	Fall 2018
Engineering Impact On Society, Dr. W.G. Wild, Jr. (EAS 202, undergraduate)	Spring 2018
Engineering Impact On Society, Dr. W.G. Wild, Jr. (EAS 202, undergraduate)	Spring 2017
Engineering Impact On Society, Dr. W.G. Wild, Jr. (EAS 202, undergraduate)	Spring 2016
Special Topics: Materials Characterization and Properties, Prof. H. Lin (CE 500, graduate)	Fall 2015
Chemical Engineering Analysis I, Prof. M. Dupuis (CE 531, graduate)	Fall 2015
Engineering Impact On Society, Dr. W.G. Wild, Jr. (EAS 202, undergraduate)	Spring 2015
Chemical Engineering Analysis I, Prof. J.M. Nitsche (CE 531, graduate)	Spring 2015
Special Topics: Materials Characterization and Properties, Prof. H. Lin (CE 500, graduate)	Fall 2014
Chemical Engineering Analysis I, Prof. J.M. Nitsche (CE 531, graduate)	Fall 2014
Engineering Impact On Society, Dr. W.G. Wild, Jr. (EAS 202, undergraduate)	Spring 2014
Chemical Engineering Analysis I, Prof. J.M. Nitsche (CE 531, graduate)	Spring 2014
Workshop Instructor	
University at Buffalo – SUNY, LSAMP Research Method Series	
Python – a Primer for Science and Engineering	Jun 2018
APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA)	
APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python	Jun 2018 Mar 2018
APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 – Molecular Modeling and the Materials Genome, Mt. Hood (OR)	Mar 2018
APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 – Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics	
APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 – Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology	Mar 2018 Jul 2015
APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 – Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics	Mar 2018
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 – Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology 	Mar 2018 Jul 2015 Jan 2012
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 – Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology Statistical Mechanics, Prof. B. Widom (CHEM 796, graduate) 	Mar 2018 Jul 2015 Jan 2012 Spring 2007
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 – Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology 	Mar 2018 Jul 2015 Jan 2012
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 – Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology Statistical Mechanics, Prof. B. Widom (CHEM 796, graduate) 	Mar 2018 Jul 2015 Jan 2012 Spring 2007
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 – Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology Statistical Mechanics, Prof. B. Widom (CHEM 796, graduate) Honors Physical Chemistry I, Prof. J.H. Freed (CHEM 389, undergraduate) 	Mar 2018 Jul 2015 Jan 2012 Spring 2007
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 – Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology Statistical Mechanics, Prof. B. Widom (CHEM 796, graduate) Honors Physical Chemistry I, Prof. J.H. Freed (CHEM 389, undergraduate) STUDENT MENTORING (AS PRIMARY ADVISOR AT THE UNIVERSITY AT BUFFALO – SUNY) 	Mar 2018 Jul 2015 Jan 2012 Spring 2007 Fall 2005
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 - Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology Statistical Mechanics, Prof. B. Widom (CHEM 796, graduate) Honors Physical Chemistry I, Prof. J.H. Freed (CHEM 389, undergraduate) STUDENT MENTORING (AS PRIMARY ADVISOR AT THE UNIVERSITY AT BUFFALO – SUNY) Mitchell R. Lamper (BSc student) 	Mar 2018 Jul 2015 Jan 2012 Spring 2007 Fall 2005 since 2019
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 – Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology Statistical Mechanics, Prof. B. Widom (CHEM 796, graduate) Honors Physical Chemistry I, Prof. J.H. Freed (CHEM 389, undergraduate) STUDENT MENTORING (AS PRIMARY ADVISOR AT THE UNIVERSITY AT BUFFALO – SUNY) Mitchell R. Lamper (BSc student) Aatish Pradhan (MSc student) 	Mar 2018 Jul 2015 Jan 2012 Spring 2007 Fall 2005 since 2019 since 2018
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 - Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology Statistical Mechanics, Prof. B. Widom (CHEM 796, graduate) Honors Physical Chemistry I, Prof. J.H. Freed (CHEM 389, undergraduate) STUDENT MENTORING (AS PRIMARY ADVISOR AT THE UNIVERSITY AT BUFFALO – SUNY) Mitchell R. Lamper (BSc student) Aatish Pradhan (MSc student) Krutika Patidar (MSc student) 	Mar 2018 Jul 2015 Jan 2012 Spring 2007 Fall 2005 since 2019 since 2018 since 2018
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 - Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology Statistical Mechanics, Prof. B. Widom (CHEM 796, graduate) Honors Physical Chemistry I, Prof. J.H. Freed (CHEM 389, undergraduate) STUDENT MENTORING (AS PRIMARY ADVISOR AT THE UNIVERSITY AT BUFFALO – SUNY) Mitchell R. Lamper (BSc student) Aatish Pradhan (MSc student) Krutika Patidar (MSc student) Dhairya Nilesh Chheda (MSc student) 	Mar 2018 Jul 2015 Jan 2012 Spring 2007 Fall 2005 since 2019 since 2018 since 2018 since 2018
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 - Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology Statistical Mechanics, Prof. B. Widom (CHEM 796, graduate) Honors Physical Chemistry I, Prof. J.H. Freed (CHEM 389, undergraduate) STUDENT MENTORING (AS PRIMARY ADVISOR AT THE UNIVERSITY AT BUFFALO – SUNY) Mitchell R. Lamper (BSc student) Aatish Pradhan (MSc student) Krutika Patidar (MSc student) Dhairya Nilesh Chheda (MSc student) Nathaniel Swanson (BSc student) Brian Balzano (BSc student) 	Mar 2018 Jul 2015 Jan 2012 Spring 2007 Fall 2005 since 2019 since 2018 since 2018 since 2018 since 2018
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 - Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology Statistical Mechanics, Prof. B. Widom (CHEM 796, graduate) Honors Physical Chemistry I, Prof. J.H. Freed (CHEM 389, undergraduate) STUDENT MENTORING (As PRIMARY ADVISOR AT THE UNIVERSITY AT BUFFALO – SUNY) Mitchell R. Lamper (BSc student) Aatish Pradhan (MSc student) Krutika Patidar (MSc student) Dhairya Nilesh Chheda (MSc student) Nathaniel Swanson (BSc student) Brian Balzano (BSc student) Ryan Hazard (BSc student) Ryan Hazard (BSc student) 	Mar 2018 Jul 2015 Jan 2012 Spring 2007 Fall 2005 since 2019 since 2018 since 2018 since 2018 since 2018 since 2018
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 - Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology Statistical Mechanics, Prof. B. Widom (CHEM 796, graduate) Honors Physical Chemistry I, Prof. J.H. Freed (CHEM 389, undergraduate) STUDENT MENTORING (AS PRIMARY ADVISOR AT THE UNIVERSITY AT BUFFALO – SUNY) Mitchell R. Lamper (BSc student) Aatish Pradhan (MSc student) Nathaniel Swanson (BSc student) Nathaniel Swanson (BSc student) Brian Balzano (BSc student) Ryan Hazard (BSc student) Ian Rozensky (BSc student) 	Mar 2018 Jul 2015 Jan 2012 Spring 2007 Fall 2005 since 2018 since 2018 since 2018 since 2018 since 2018 since 2018
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 - Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology Statistical Mechanics, Prof. B. Widom (CHEM 796, graduate) Honors Physical Chemistry I, Prof. J.H. Freed (CHEM 389, undergraduate) STUDENT MENTORING (AS PRIMARY ADVISOR AT THE UNIVERSITY AT BUFFALO – SUNY) Mitchell R. Lamper (BSc student) Aatish Pradhan (MSc student) Krutika Patidar (MSc student) Dhairya Nilesh Chheda (MSc student) Brian Balzano (BSc student) Ryan Hazard (BSc student) Ian Rozensky (BSc student) Yan Chen (BSc student) Yan Chen (BSc student) 	Mar 2018 Jul 2015 Jan 2012 Spring 2007 Fall 2005 since 2018 since 2018 since 2018 since 2018 since 2018 since 2018 since 2018
 APS GSOFT Short Course on Machine Learning and Data Science in Soft Matter, Los Angeles (CA) Machine Learning with Python FOMMS 2015 - Molecular Modeling and the Materials Genome, Mt. Hood (OR) Data Mining, Machine Learning, and Materials Informatics Harvard University, Department of Chemistry and Chemical Biology Computational Visualization and Modeling Tools for Real-Life Chemical Research Teaching Assistant, Cornell University, Department of Chemistry and Chemical Biology Statistical Mechanics, Prof. B. Widom (CHEM 796, graduate) Honors Physical Chemistry I, Prof. J.H. Freed (CHEM 389, undergraduate) STUDENT MENTORING (AS PRIMARY ADVISOR AT THE UNIVERSITY AT BUFFALO – SUNY) Mitchell R. Lamper (BSc student) Aatish Pradhan (MSc student) Nathaniel Swanson (BSc student) Nathaniel Swanson (BSc student) Brian Balzano (BSc student) Ryan Hazard (BSc student) Ian Rozensky (BSc student) 	Mar 2018 Jul 2015 Jan 2012 Spring 2007 Fall 2005 since 2019 since 2018 since 2018 since 2018 since 2018 since 2018 since 2018 since 2018 since 2018 2017 – 2018

STUDENT MENTORING (AS PRIMARY ADVISOR AT THE UNIVERSITY AT BUFFALO – SUNY, CONTINUED)	
• Janhavi Abhay Dudwadkar (MSc student)	since 2017
 Chris Tunde Bamix (MEng student '18; now Civilian Chemical Engineer at the US Navy) 	2017 – 2018
 Chi Hin Chan (BSc '18 student) 	2017 – 2018
 Andrew J. Derooy (BSc '18 student) 	2017 – 2018
• Sykhere A. Brown (BSc student)	2017
 Amol Rajendra Mahajan (MSc '19 student) 	2016 – 2019
 Aditya Sonpal (MSc '18, PhD student) 	since 2016
 Gaurav Vishwakarma (MSc '18, PhD student) 	since 2016
 Po-Han Chen (MSc '18 student, now at M&T Bank) 	2016 – 2018
 Ryan A. Fair (BSc '17 student; now PhD student at University of Pennsylvania) 	2016 - 2017
 Noah A. Zydel (BSc student) 	since 2016
 Shirish Sivaraj (MSc '18 student; now Big Data Developer at Cognizant Technology Solutions) 	2016 - 2018
 Mark A. Pitman (BSc '17 student; now PhD student at University of Virginia) 	2016 - 2017
 Christopher Boulden (BSc '17 student; now Technical Analyst at Huron) 	2015 – 2017
 Vigneshwar Kumaran Sudalayandi Rajeswari (MSc '18 student) 	2015 – 2018
 Supriya Agrawal (MSc '17 student, now Process Engineer at Intel) 	2015 – 2017
 Edward H. Donowick II (BSc '16 student; now Senior R&D Engineer at CleanFiber) 	2015 – 2016
 Dana M. Havas (BSc '16 student; now MSc student at Cornell University) 	2015 – 2016
William S. Evangelista II (MEng '16 student; now Solutions Engineer at Iconics)	2014 – 2016
• Yujie Tian (MSc '16 student, now Analyst at HSBC)	2014 – 2016
Yudhajit Pal (PhD student)	since 2014
Anna C. Smith (BSc '17 student; now Sr. Specialist Scientific Data Analyst at Merck)	2014 – 2015
 Mikhail Pechagin (BSc '16 student; now at VL Trading Group) 	2014 – 2016
Mohammad Atif Faiz Afzal (PhD '18 student; now Senior Scientist at Schrödinger)	2014 – 2018
 Zachary A. Manzer (BSc '16 student; now PhD student at Cornell University) 	2013 – 2015
 Jun Pan (MEng '15 student) 	2013 – 2015
 Shawn S. Zadeh (MEng '16 student; now Sr. Automation Engineer at Fresenius Kabi) 	2013 – 2016
 Ching-Yen Shih (MSc '15 student; now Statistical Programmer at Alkermes) 	2013 – 2015
 Mojtaba Haghighatlari (PhD student) 	since 2013
 Sai Prasad Ganesh (BSc '17 student; now MSc student at University of Delaware) 	2013 – 2017
 Bryan A. Moore (BSc '15 student; now Data Scientist and Engineer at Broadridge) 	2013 – 2015
Summary: 5.5 PhD students, 18 MSc/MEng students, 20 BSc students	
STUDENT MENTORING (OTHER)	
 Karnesh Jain (PhD student, Prof. J. Errington, University at Buffalo – SUNY) 	2018
 Akshara Goyal (MSc student, Prof. D. Kofke, University at Buffalo – SUNY) 	2016 – 2018
 Meghana Nallapu (MSc student, Prof. M. Dupuis, University at Buffalo – SUNY) 	2016 – 2017
 Navneeth Gokul (PhD student, Prof. D. Kofke, University at Buffalo – SUNY) 	since 2016
 Yusen Zhou (PhD student, Prof. S. Neelamegham, University at Buffalo – SUNY) 	since 2016
 Hanguang Zhang (PhD student, Prof. G. Wu, University at Buffalo – SUNY) 	since 2016
 Tiange Bi (PhD student, Prof. E. Zurek, University at Buffalo – SUNY) 	since 2016
 Pavan Kumar Behara (PhD student, Prof. M. Dupuis, University at Buffalo – SUNY) 	since 2015
 Aparajita Dasgupta (MSc student, Prof. S.J. Park, University at Buffalo – SUNY) 	2015 – 2016
Ramachandran Subramanian (PhD student, Prof. D.A. Kofke, University at Buffalo – SUNY)	2015 – 2016
 Thomas J. Duignan (PhD student, Prof. J. Autschbach, University at Buffalo – SUNY) 	since 2015
 Alexander V. Marchenko (PhD student, Prof. J. Autschbach, University at Buffalo – SUNY) 	2014 - 2018

- Adam R. Rall (PhD student, Prof. J.R. Errington, University at Buffalo SUNY)
- Supriya Shrestha (MSc student, Prof. A. Aspuru-Guzik, Harvard University)
- László R. Seress (BSc student, Prof. A. Aspuru-Guzik, Harvard University)
- Alexander Shlomo Ramek (BSc student, Prof. A. Aspuru-Guzik, Harvard University)
 James H. Zhu (REU student, Prof. A. Aspuru-Guzik, Cornell University)
 2011 2012
 2011
- James H. Zhu (REU student, Prof. A. Aspuru-Guzik, Cornell University)
 Anna M. Brockway (REU student, Prof. A. Aspuru-Guzik, Haverford College)

2010

2014 - 2018

2012 - 2013 2011 - 2014

STUDENT MENTORING (OTHER, CONTINUED)	
 Lauren A. Kaye (BSc student, Prof. A. Aspuru-Guzik, Harvard University) 	2010 – 2011
 Aryeh Gold-Parker (BSc student, Prof. A. Aspuru-Guzik, Harvard University) 	2009 – 2012
 Roberto Olivares-Amaya (PhD student, Prof. A. Aspuru-Guzik, Harvard University) 	2009 – 2012
• Eduardo Márquez (REU student, Prof. G.KL. Chan, University of Puerto Rico, Mayagüez)	2008
 Michael Avilés (REU student, Prof. G.KL. Chan, Arcadia University) 	2006
Summary: 11 PhD students, 4 MSc/MEng students, 8 BSc/REU students	
STUDENT AWARDS & HONORS	
 NSF FAIR Hackathon Housing and Travel Grant (Mojtaba Haghighatlari) 	2019
 MolSSI Phase-II Software Fellowship (Mojtaba Haghighatlari) 	2019
 IPAM Long Program Housing and Travel Grant (Mojtaba Haghighatlari) 	2018
 Springer Poster Award at FOMMS 2018 (Mohammad Atif Faiz Afzal) 	2018
 MolSSI Phase-I Software Fellowship (Mojtaba Haghighatlari) 	2018
 NSF Travel Award for MLSE 2018 (Mohammad Atif Faiz Afzal) 	2018
 NSF Travel Award for MLSE 2018 (Mojtaba Haghighatlari) 	2018
 UB CBE Senior Academic Excellence Award (Andrew J. DeRooy) 	2018
 AIChE WNY Local Section Outstanding Senior Award (Chi Hin Chan) 	2018
 Graduate Student Grant of the Mark Diamond Research Fund (Mojtaba Haghighatlari) 	2017
 2017 UB CBE Excellence in Research Award (Mojtaba Haghighatlari) 	2017
 Scholarship Award for Scientific Excellence of the ACS Division of Chemical Information (Mohammad Atif Faiz Afzal) 	2017
 1st Prize of the Buffalo Student SandBox Competition (Mohammad Atif Faiz Afzal) 	2017
 People's Choice Award of the Bright Buffalo Niagara Entrepreneur Expo (Mohammad Atif Faiz Afzal) 	2017
 WNY-ACS Distinguished Student Award (Ryan Fair) 	2017
UB CBE Senior Academic Excellence Award (Sai Prasad Ganesh)	2017
UB Louis Stokes Alliance for Minority Participation Summer Research Internship (Sykhere Brown)	2017
 UB 3MT Competition Finalist (Mohammad Atif Faiz Afzal) 	2017
UB Presidential Fellowship (Ryan Fair, declined)	2017
 UB Presidential Fellowship (Sai Prasad Ganesh, declined) 	2017
UB SEAS Senior Scholars Research Scholarship (Ryan Fair)	2017
UB SEAS Senior Scholars Research Scholarship (Sai Prasad Ganesh)	2017
• Winner of the UB Hackathon (Mohammad Atif Faiz Afzal, Edward H. Donowick II)	2016
IPAM Travel Grant (Mohammad Atif Faiz Afzal)	2016
• UB SEAS Dean's List (Ryan Fair)	2016 – 2017
Graduate Student Grant of the Mark Diamond Research Fund (Mohammad Atif Faiz Afzal)	2016
 IPAM Long Program Housing and Travel Grant (Mojtaba Haghighatlari) 	2016
UB CBE Best Poster Award (Mojtaba Haghighatlari)	2016
APS Distinguished Student Travel Award (Mohammad Atif Faiz Afzal)	2016
 Outstanding Student Poster Award of the ACS Physical Chemistry Division 	2016
(Mojtaba Haghighatlari)	
 Scholarship Award for Scientific Excellence of the ACS Division of Chemical Information (Mojtaba Haghighatlari) 	2016
• 1Sα Poster Prize of the Midwest Theoretical Chemistry Conference (Mohammad Atif Faiz Afzal)	2016
 2016 UB CBE Graduate Student Seminar Speaker (Mohammad Atif Faiz Afzal) 	2016
 UB SEAS Senior Academic Excellence Award of the UB CBE Department (Dana M. Havas) 	2016
 Honorable Mention for the NSF Graduate Research Fellowship (Dana M. Havas) 	2016
 Professor Emeritus Howard Strauss Memorial Scholarship Award of the UB Engineering Alumni Association (Mohammad Atif Faiz Afzal) 	2016
Honorable Mention for the Ovshinsky Student Travel Award of the	2016
APS Division of Materials Physics (Mohammad Atif Faiz Afzal)	
 UB Honors College Advanced Honors Scholar (Sai Prasad Ganesh) 	2015
 TSTC Travel Grant (Mohammad Atif Faiz Afzal) 	2015

STUDENT AWARDS & HONORS (CONTINUED)

- UB SEAS Dean's List (Sai Prasad Ganesh)
- UB SMURI Summer Research Award (Bryan A. Moore)

2014 - 2016 2014