May 28, 2008 MAE Ph.D. Thermal Fluid Sciences Qualifying Exam CLOSED BOOK

ASSIGNED NUMBER	_	Name:

Part I - Fluid Mechanics

- 1) Given the following velocity field for steady, incompressible flow, $\vec{V} = Ax\hat{i} Ay\hat{j}$,
 - a. Determine the stream function that will yield this velocity field.
 - b. Plot the streamline pattern in the first quadrant of the xy plane.
 - c. What type of flow does the streamline pattern represent?
 - d. Does the velocity field satisfy continuity? Why or why not?
 - e. Is the flow irrotational or rotational and why?
 - f. Determine the velocity potential function.
 - g. Show that the lines of constant potential function and streamlines are orthogonal.
- 2) A fluid is at rest between two infinite, stationary flat plates.

At time t = 0 the velocity V(y,0) = 0. At time $t = 0^+$ both plates are suddenly accelerated to and then maintained at a velocity $V(h,t) = V(0,t) = V_0$.

Find the velocity distribution in the fluid V(y,t).

May 28, 2008 MAE Ph.D. Thermal Fluid Sciences Qualifying Exam CLOSED BOOK

ASSIGNED NUMBER	Name:
The second secon	

Part II - Heat Transfer

A thermocouple (t.c.) junction of diameter d_t and length L has been designed as shown above. Its purpose is to measure the temperature of the air flowing through the duct. Calibrations, however, always indicate a difference between the air and the thermocouple temperatures. The objective of this analysis is to determine the reason for this 'thermocouple error' and calculate its value: $(T_t - T_a)$.

Known: ti

thermocouple diameter, $d_{\rm t} = 5~mm$ thermocouple length, L = 3~mm thermocouple emissivity, $\varepsilon_{\rm t} = 0.6$ mean air speed, V = 5~m/s nominal air temperature, $T_{\rm a} = 500^{\rm o}{\rm C}$

duct diameter, D = 30 cmduct wall temperature, $T_{\rm w} = 100 \, ^{\rm o}{\rm C}$ duct wall emissivity, $\varepsilon_{\rm w} = 0.8$

- a. identify (and write) the heat transfer mechanisms which must be included in a mathematical model of the thermal behavior of the system;
 b. perform 1st Law analyses on (1) the junction and (2) the t.c. wires, and derive relations which could be used to determine the *thermocouple error*, (T₁ T_a):