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" Computation and Applied Mechanics Qualifier, Sp 2009

Please work all 6 problems; time allowed is 3 hrs, so divide your time well among the problems—do not
spend too much time on any one problem!

1) Consider a beam theory where plane sections in the yz plane remain plane after bending and bending
is restricted to one plane. The displacements are assumed to be given by w(y, z) = ¥(2)y, v = v(2)
where  is the rotation angle of the cross-section.
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How many unknown displacement functions are there at this point?
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Does this theory have any through-thickness stretch? Demonstrate.

For Euler-Bernoulli (E-B) beam theory, there is an additional assumption about ¥y, . Show how this
assumption leads to a reduction in the number of displacement functions.

Use the definition M = ffA o,ydA and a one-dimensional constitutive equation g, = E¢, to derive a
moment-curvature relationship for the E-B beam.

Derive the moment and shear equilibrium equations for the beam by considering an infinitesimal length
“dz”; see the figure below for sign definitions.
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If the beam has an axial load “P” and a slope d—z , show how this will affect the moment equilibrium

equation by contributing an extra term.

In the Timoshenko beam theory, we permit a non-zero value of vy, . How many displacement variables
will there be using the same displacement assumptions as given above?

2) Consider the beam of length “L” shown below. Is this beam statically determinate? Demonstrate.
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a) In this system, the ODE for an Euler-Bernoulli beam is —EIv" = M(z) .

Simply assume that you know the reaction force R, (beam is assumed to be a cantilever), formulate
M(z), and integrate it to get the deflection . Show which b.c. on displacement and its derivatives you
would use to solve for the unknown coefficients. Do not actually solve for those coefficients.

You still have an unknown value, mainly the reaction R, . How would you solve for this value? Do not
actually solve.

b) Instead of using an exact solution, we propose an approximation solution to the above beam loading,
given by v(2z) = vyz%(L — z) . Demonstrate that this approximation satisfies all the essential b.c.

Using the Theorem of Minimum Potential Energy, completely set up the expression for M and indicate
how you would solve for the undetermined coefficient v, .Wili this be a linear or higher order equation
for vy ? Do not actually solve.

What would be the work term if the loading were a single point loading at z=a as shown:
Yt
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3) Consider an axisymmetric cylinder.

a) Write the conditions you§would pose and show how these could be used to solve for the coefficients
C1 and C; for u(r) for each of the three conditions below, which have inner and outer radii and pressures
as given. You do not actually need to complete the solution for the coefficients.



A) B) ' ) Fisid

Po Q c Oﬁe

P
Po

{1
1l

o

- Ve
=b,p, ‘

Vo

]
u

Q r;=a
)

b r,=b

b) If there is a single cylinder of format “B” with inner pressure equal to zero and there are no end caps,

consider the shape of the curves for the stresses o,.and gy .

Use the Tresca criterion to predict where you would check for yield and which stresses you would
consider. (Do not solve for a critical value of p0.) Hint: Assume say (a/b)=1/2 and make a small sketch
which-shows values at r=a and r=b and connect them for each stress.

c) Let us add end caps and still use the Tresca criterion to predict failure. Does adding the end caps make
any difference to which stresses we would consider r for the critical value of pressure or to the critical
value itself? Demonstrate.

d) The term T E

o indicates an assumption of plane stress. If the cylinder is long, plane strain would be
more appropriate. Please give the assumptions of plane strain and demonstrate how you wouid

produce a constitutive equation which relates normal stresses & strains in the r-8 plane.



Problem 4

Consider a linear elastic isotropic material in three-dimensions with the constitutive relationship
given as
O'l] = 2/&61] + ﬂ/é}JCkk s

where o;; and €; represent components of the stress and strain tensors, respectively, while

i
‘and A are the Lame elastic moduli. Assume standard indicial notation with sums over repeated
indices.

(a) Find the relationship between the principal stresses and the principal strains.
(b) Show that the principal directions of stress and strain always coincide.



Problem 5

A tapered elastic bar has length L and cross-sectional area A(x), as shown in the figure below.
Assume that the response is governed by the following one-dimensional differential equation of
equilibrium:

—d—(EA@)+f=O,
dx dx

where E is the elastic modulus, u(x) is the axial displacement and f(x) is an applied body

force per unit length. The bar is restrained at x = 0, while normal tractions are applied at x =L
as illustrated, such that

du
dx

=P.
x=L

EA

Derive a weak form for this problem in two different ways, using (a) the principle of virtual work
and (b) the principle of minimum total potential energy for the bar.
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Problem 6

Determine the Jacobian matrix for the two-dimensional four-node element shown below.
Demonstrate that this Jacobian is constant for the case with = 0°, but is singular for g = - 45°.
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SOME TENSOR OPERATIONS

Transformation
xp, = ap,i xi

Xi = QAipr Xpy

Orthogonality

Apri Agri = Opigqr » Qips Ajpr = By

Alternating tensor
eipe =5 (=) G—k) k=D

€ijk €kqr = Oiq Ojr — Oir bjq
Notation for unit vectors: &; , &,

Cross-product

5= A,X§ is Ci= eijkA]-Bk

Gradient

VO = o ()

a
Xi



MAE 415 F 2008 Test 1 equations

Stress Transformation Equations

o, =0,c08’ §+0,sin’ 0+ 27, sinfcosd
Ty, =7,(cos’@—sin’ 0) + (o, — 0,)sinfcosd
oy, = 0y sin®@ + g, cos? O
— 274y sinf cos O

[]=[r]e]r]

Determining Principal Stresses

2
o, +0o o -0
— — Y X Yy 2
O-max,min - 0-1,2 - 9 i\/( 9 J +Txy

27,
tan 260, = 2
o,—0,

Strain Definitions

ou ov ow
. = — gy o — gz I e
Ox oy 0z

_ 6u+ v

Vay = dy = ox

Strain Transformation Equations

e t+e, &,—¢
e, =— L= 2 o520+ 5in26
) 2 2 2
E.+E, £.—¢
g, =S8 Ee T 0600 -T sin2g
g 2 2 2

Yoy =—(&,—¢&,)sin20+y, cos20

Determining Principal Strains

2 2
E.+¢& E,—&
2 2 2

7xy

£,—¢&,

tan 249p =

von Mises Criterion

(o, — ay)z + (o, - crz)z + (0, — 0)% + 6(12,

2 2 — 2
+ Ty, + T%%;) = 20°%,

Generalized Hooke’s Law

rl1 —v —v 0 0 0
E E E
LA
E E E 0
v L 50 o |?
| E E 0,
- 1 Tyz
0 0 0o = 0 o |,
0o 0 o0 o X o ™
G
o 0 0 0 0 =
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Thermal Strain in Free Expansion

g, =aAT

Area of a Circle

A=nmr



Equation sheet, MAE 415, test 2 FO8 General solution, axisymmeitric, isothermal annulus

Cy Uu .,
Compatibility Equation for Stress Functions u=cr+ T y & = P gg =u'(r)
(1-v)
RN S ST 0 = Toyrle V) = 6 —5—]

8x4 + ax2a)}2 + ay4
Annulus, internal & external pressure

Relating Stress Functions (o Stresses

o= CPi=bp  (pi—po) a’h?
PEPS PEPS r b2 — g2 (b2 — q2) r2
Or=3T 9T o P b (i p,) 0D

o p2 — g2 (b2 —a?)r2

L _oe 1-v (a’p;— b?p,) 7
xy dxdy u=—p b2 — g2
1+ v (p; — o) a’h?
E (b2 —a?)r
If closed-ended cylinder under pressure, add

Or, in (r,0),

o = 100 1 0%0
" roor  r2 062 pa% — pyb?
o %= T e
%= or? Compound cylinder, cylinder 2 over cylinder 1
. _ii?_l_f’z_q)__i<la_¢) p
T r296  rarag  or \r o 8

- 1 (c?2+ b2 1 /b%+ a?
b [E—z(cz—b2+ Vz) + E(bz—az B vl)]

Rotating annulus

Generalized Hooke’s Law-isothermal

r -

LY Yy 00
E E E 3+v (., ., , a’b? "
&y v _]., v 0 o ollos Or = ) a®+b*—re— 2 pw
&y 5 EV lE Ty
- -—— — 0 0 0 3+v)(1—-v 14+v
\_| E E E )9: u=( ) (1) a’ + b% - r?
R 1 T 8E 3 + v
e T | 1+v a?b?
Vs G 1 [ 1= 72 )p?D'ZT'
}/) O O O 0 5 O \Tyz Vv
0 0 0 0 0 l T hermal stress in annulus
L G | General solution:
A+ v)a (7 o
von Mises yield criterion, plane stress, in (1-v)r L rartort T
principal coordinates
B E 1+ v)a rT d o)
Oeq = 5qrt (017 + 0,° = 0,0,) = 0y, Or = 1+ @ —v)rzfa rdr-+ a-2v)



MAE 415 Test #3 Equation Sheet, Fall 2008

Beam Centroid
2A;

Z =

Product of inertia
I, = Z (I + Ady?);

Iz = 2 (I, + Adydy),

Moment-curvature
d>v M,
dx? "~ El,

Bending stress
Myl + Myly,)z = (MyLy, + ML)y
X 1,1, — I2
yiz = lyz

Displacement assumption

dv
w= —y—t up®)

Beam statics equations

dV_
dx p
dM_ v
dx

Composite beam
A1y; + IngAsy; E;

= ; n; = ==

A1 + ZniAi

<

It - 11 + Znili

My nMy
Ox1 = _—It" ’ Oxi = I,

Reciprocity Theorem

m n
> ms, = Y B
=1 =1

Typical strain energy contributions in beam

U= fNde+ fMde+ faVzdx
~ ) 24E 2EI 24G

N szdx
2]G

Castigliano’s 2nd theorem

oU /3P, = §;

Castigliano’s 2" evaluation for truss structure

n
5 = 121\/ Al
P AE L \ep ) Y
j=1

Values for end-loaded curved beam
M =PR(1—-cos@), V =Psing,
N =Pcos®8

-
\Y)

R
P«

Conditions for P.E. minimum for Rayleigh-Ritz

0 0
M_, . A_,
da, da,

Wherell =U -W

P.E. expression for beam

=1 [2 (&) -]



MAE 416 Spring 2009 Test 1 Equation Sheet

Cylindrical Shells
_ M —EX [t _ Qo —ex My —&(L—X) [qi — —
w(x) 525 © (sinex — cos ex) a5 € L COsEX+ e [sine (L — x)

— QL e (L-2) — 1 _ ONx
cose (L —x)] + 235 © € cose(L—x)+ Yoy [p(x) - ]

€= [3 (1- v2)1/4]/\/7?7t

M
w'(x) = - D e ¥ cosex + ZSZOD e * (sinex + coséex) — e_DL e tL=2) cose (L —x)
+ ZS_ZLD e~ [sing (L — x) + cose (L —x)] + o p'(x)

Singularity Functions

(x — a)n+1

> 0 (di
1 n = 0; (dif ferent rule forn <0

| 1(6 — )" d =

S=- f qdz, M= dez, where 'q' is applied loading

Beams

My Loy Myl My lyy— Myly
O-Z — ( Y . 4 x + yy yz Y y
Ixxlyy" Ixy Ixxlyy" Ixy

z -1 Ly L1 (M
u xy xx x . , 2
= td D=(L,I,,— I

Shear Flow, Open Section

S, L., — Sy1 s Syul,y — S, l s
gs = — (ﬂ-x—zziy> f tx ds — <M> f ty ds (assuming start's'from edge)
Ixxlyy — Igy 0 Lexlyy — Ly 0



MAE 416 Spring 2009 Test 2 Equation Sheet

Shear Flow Distribution--Skin only, no stringers

Open Section

Syl — Syl s Sylyy — Syl §
4 = — <Ly2"y> f tx ds — <yy—2xy> f ty ds (assuming start's'from edge)
Ixnyy - Ixy 0 Ixxlyy Ixy

Closed Section —same as above, except add ¢,

Skin and stringers, open section
n
Sxolex — Syol olyy — Sx,ol s
o= (S ([T s zgxr (P2 (["eppas+ > m
Lixlyy — 1%y Ixxlyy Ixy 0 ~

Matching internal and external (applied) moments
Internal moment (from shear flow) = § pqpds + 2Aq;, where pis perpendicular distance and
2dA = pds

Torsional stiffness, torsional moment
Open Section

do 1
T=6G] 5, J=;%isit}

Closed Section
do T ds

dz ~ 44% [ Gt
Shear flow from torsion—closed section T = 2Aq

" II II H 4

Contribution of skin between stringers “/” and “j” to area of stringer “i

=2+ 2

Shear-deformable (Timoshenko) beam
S=GAWV + ¢)
M = EI) Y and v are functions of (z)only

Admissible b.c.
Prescribe v or § = GA (v + ) AND Prescribe  orM = EIy
Some leftovers—singularity functions

x - n+1
f (€ —aynde = ZZ9T

—— n = 0;(different rule forn <0



MAE 416 Spring 2009 Test 3 Equation Sheet

Skin and stringers, closed section
n
Sxlyx — Syl - S,1 s
qs = — (——u> (j tpxds + ZB xr> (“‘_“‘“‘—xy) (f tpyds + 2 Bry'r> Ll
N\ Lxlyy — 13 Lixlyy — 12, 0 e

Matching internal and external (applied) moments
Internal moment (from shear flow) = ¢ pg,ds + 2Aq;, where pis perpendicular distance and 2d4 = pds;
(especially handy when gy, is constant over a section of skin.)

Torsional stiffness, torsional moment, closed section—single cell, then multiple cell:

mal do T ds- Itin] (d@) 1 ds
SNG4z T a2 T TP \a2)e T 24, T TGt

Shear flow from torsion—closed section, single cell T = 24q

ll H ll HY

Contribution of skin between stringers “i” and “j” to area of stringer “i

Bi= 2 (2+ al)

LY

Shear distributions, inclined booms, where “w” subscript indicates “web” (skin)

- dx, .
SW:Sx—ZPZ,rE Sy,w:Sy_sz,rE
r=1 r=1

" _ it

Balance of internal and external moments where p IS lever arm:

an yfo - fCIb,DdS + ZAqSO Z err]r + Z rfr

Sum of torques, multi-cell:
N

= 244,
r

Potential energy, buckling & bending, at neutral equilibrium

, EL (L P, (v , EI [* L
buckling Tl = —f (v")*dz — —f (v'")? dz ;bending 11 = —f (v")%dz — f qv dz

General solution for buckling equation, and its derivatives & force and moment relationships

P
v(z) = C; + Cyz+ C5 sindz+ C,cos Az, A= T

v'(z) = C; + C3AcosAz — C4AsinAz

v'(z) = — C3A%sindz — C4A% cos Az
v'"(z) = — C323cosAz+ C,A3sinlz

Moment & Shear relationships: M = —EIv" S = —EIv'" — PV’



