


21. “Polymer-assisted deposition: one simple process, a large number of electronic materials,” Summer Lecture Series, Laboratory’s National Security Education Center, Los Alamos National Laboratory, Los Alamos, NM, July 18, 2014.

22. “Electronic materials synthesized by a polymer-assisted deposition,” University of Illinois at Urbana Champaign, Urbana, IL, May 2, 2014.


32. “Synthesis and characterization of thin films by a chemical solution deposition,” Texas A&M University, College Station, TX, Feb. 9, 2012.


50. “Polymer-assisted deposition: an alternative approach to epitaxial growth of metal-oxide films,” Department of Physics, The Ohio State University, Columbus, OH, Oct. 16, 2008.
52. “Epitaxial growth of simple and complex metal-oxide films by a polymer-assisted deposition,” Institute of Semiconductors, Chinese Academy of Science, Beijing, China, June 19, 2008.


55. “Self-assembled and vertically aligned nanocomposite films: their strain control and electrical properties,” Univ. of Electronic Sci. & Technol. of China, Chengdu, China, June 2, 2008.


57. “Polymer-assisted deposition of metal-oxide films,” 17th International Symposium on the Applications of Ferroelectrics (ISAF), Santa Fe, New Mexico, Feb. 24 - 27, 2008.


74. “Epitaxial growth of both simple and complex metal-oxide films by polymer-assisted deposition,” 107th ACerS Annual Meeting, Baltimore, Maryland, April 18 - 21, 2005.


102. “Ag-doping YBCO on the improvement of junction and SQUID performance,” Workshop of Flux, Quantum, and Mesoscopic Effects in Superconducting Materials and Devices, Santa Fe, New Mexico, Aug. 4 - 8, 1997.


105. “Material and processing development in the fabrication of edge-geometry SNS HTS junctions and DC SQUIDs,” Dept. of Physics, Peking University, Peking, China, Dec. 9, 1996.

106. “Development and fabrication of ramp edge-geometry SNS HTS Josephson junctions and DC SQUIDs,” Institute of Physics, Chinese Academy of Sciences, Peking, China, Dec. 9, 1996.


