MAE’s Nagavenkat Adurthi Receives 2014 Outstanding Master’s Thesis Award from the Northeastern Association of Graduate Schools

Published May 20, 2014 This content is archived.

The new Conjugate Unscented Transform (CUT) method reduces the time needed to simulate natural disasters, which could help predict space collisions, where volcanic ash spreads and more. 

Print

The amount of time it takes to mathematically simulate the path of ash from a volcano eruption or a satellite collision can be hours, even days.

However a new method, the Conjugate Unscented Transform (CUT), has shortened the process to minutes.

The approach was created by Nagavenkat Adurthi, a UB mechanical engineering doctoral candidate, while completing a homework assignment as a master’s student. Adurthi found taught methods too inaccurate or time-consuming, so he designed his own.

Nagavenkat Adurthi's master's thesis on CUT earned him the Outstanding Master’s Thesis Award for 2014 from the Northeastern Association of Graduate Schools.

“I thought, ‘Why do we have to put points on these axes? Why don’t we put them somewhere else?’ So, I introduced new axes,” says Adurthi. “I reduced the number of evaluations required to get the same amount of accuracy. Once I got fewer points than the regular methods, I found out CUT’s real potential.”

Because conditions that lead to natural disasters often are unknown, researchers run multiple simulations using different variables, or points, to more accurately predict events. The uncertainty is overcome by taking an average.

Under the direction of Puneet Singla, associate professor of mechanical and aerospace engineering, Adurthi tested the new approach against existing methods.

The Monte Carlo method, often used to predict space collisions, requires at least 2 million to 3 million random points, which take more than a week to simulate. CUT reduced the number of needed points to 745, requiring fewer than 10 minutes.

Adurthi’s approach also lowered the required trials of the volcano ash propagation model from 6,500 simulations over several weeks to 161 simulations over one week.

CUT, detailed in Adurthi’s master’s thesis, “The Conjugate Unscented Transform:  A Method to Evaluate Multidimensional Expectation Integrals,” was awarded the Outstanding Master’s Thesis Award for 2014 by the Northeastern Association of Graduate Schools.

Adurthi also won two best session presentation awards for CUT during the 2013 American Control Conference, has six peer-reviewed conference publications and plans to submit two journal manuscripts on the method.

“Nagavenkat is one of those rare researchers who, with great ease, can tackle and solve with little supervision complex, interdisciplinary problems and produce publications of the highest quality,” says Singla. “It is important to mention that the computation of probabilistic hazard map for volcano ash advection would not have been computationally tractable without making use of his work.”

CUT also can be applied to sensors, GPS tracking and tsunami simulation. Adurthi plans to propose the method to NASA scientists as well.